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In this paper the global-stability theory is extended to account for weak spanwise-
flow variations using a quasi-three-dimensional framework. The analysis considers
the onset of vortex shedding behind a circular cylinder with a spanwise-varying
diameter. The quasi-three-dimensional approach models the fully three-dimensional
flow structure as a series of two-dimensional eigenvalue problems representing
the sectional-flow behaviour. The sectional results are coupled together using the
Ginzburg–Landau equation, which models the diffusive coupling and provides the
global response. The onset of global instability (and thus vortex shedding) is linked
to both the sectional growth rates (characterized by the maximum-diameter location)
and the spanwise extent of the zone of instability. Unsteady numerical simulations are
used to guide the global-stability analysis and to assess the fidelity of the predictions.
Results from the stability analysis are shown to be in good agreement with the
numerical simulations, which are in close agreement with experiments.
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1. Introduction
The theory of global instabilities can be used to develop efficient and insightful meth-

ods for describing the early onset of complex unsteady-flow phenomena. In the works
of Crouch, Garbaruk & Magidov (2007) and Crouch et al. (2009) an algorithm for the
global-stability analysis of high-Reynolds-number turbulent flows on two-dimensional
(2D) geometries is developed and successfully applied for prediction of transonic buffet
onset. Although a generalization of this approach to arbitrary three-dimensional (3D)
flows is in principal straightforward, its practical use is limited by the huge compu-
tational resources required for the full 3D eigenmode analysis. However, a wide class
of flows of practical interest (e.g. flow past a swept wing) have a nearly homogeneous
direction. This motivates an attempt at developing a simplified quasi-3D approach to
global-stability analysis based on 2D cuts from a fully 3D steady flow field. This ap-
proximation is quite affordable in terms of computer resources and offers the potential
for capturing the most important physics of the considered class of flows. However,
the extension to quasi-3D flows introduces new questions regarding the boundary of
unsteadiness and the degree of coupling in the nearly homogeneous direction.

This paper considers the onset of unsteadiness on a wavy cylinder as a simplified
model problem to evaluate the quasi-3D analysis of global instabilities. A schematic
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Figure 1. Wavy cylinder in a uniform stream.

describing the problem is given in figure 1. This geometry ideally fits the objective
of the study: on one hand, the flow is essentially 3D and, on the other hand, strictly
periodic in the spanwise direction, which significantly simplifies the solution of the
full 3D unsteady Navier–Stokes (UNS) equations needed for evaluating the simplified
approach.

The onset of vortex shedding on 2D cylinders has been shown to result from a
global instability in the form of a Hopf bifurcation (Jackson 1987; Zebib 1987).
Beyond the basic 2D findings, experimental investigations have consider different
forms of spanwise non-uniformity. Most significant to the current effort are the works
of Gaster (1969), Williamson (1989), Papangelou (1992) and Chetan (2010). Gaster
(1969) and Papangelou (1992) considered the effects of taper using cones with different
length-to-diameter ratios. Williamson (1989) investigated the role that end effects play
in defining the 3D structure of the wake. More recently, Chetan (2010) studied the
onset of shedding behind a wavy cylinder, like that shown in figure 1.

Analytical investigations of the effects on spanwise non-uniformity have largely
depended on model equations to describe the spanwise variation of the unsteady flow.
Gaster (1969), for example, proposed a van der Pol oscillator model for the shedding
behind the tapered cylinder. This model captured the key features of the shedding as
observed in the experiments. Albarède & Monkewitz (1992) used the Ginzburg–
Landau equation to capture the influence of end plates on cylinder shedding.
Experimental data were used to evaluate the equation constants, and then the equation
successfully described the origins of ‘chevron’ patterns observed in experiments.

In the current paper, we generalize the 2D global-stability analysis presented in
Crouch et al. (2007) to account for 3D baseflows. However, the baseflow variation
in one direction (spanwise) is assumed to be small and is treated as a ‘parametric’
variation, leading to a quasi-3D formulation. The spanwise coupling is then achieved
applying the Ginzburg–Landau equation. Full Navier–Stokes simulations are used
to guide and assess the stability analysis. In § 2, the quasi-3D sectional-stability
analysis and the spanwise-coupling approach are presented. Section 3 describes the
numerical formulation and numerical solutions of the UNS equations over a range of
geometries and Reynolds numbers. Section 4 presents the quasi-3D stability results,
including baseflow sensitivities, sectional-stability results and the spanwise-coupled
global response. Conclusions are presented in § 5.

2. Global-stability analysis
2.1. Problem formulation

The geometry of the wavy cylinder is specified as a body of revolution with diameter
periodically varying in the spanwise direction according to the cosine function
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D =D0 +D1cos(2πz/λ) (see figure 1). A measure of the spanwise variation is given by
D1/λ� 1. The cylinder is subjected to a uniform stream of velocity U . The maximum
diameter Dmax =D0 + D1 and the velocity U are used to scale the results. This leads
to the Reynolds number ReDmax = UDmax/ν, where ν is the kinematic viscosity in the
free stream.

Here we use the compressible-flow formulation to enable the application to more
general flows of interest. All the results presented are based on a Mach number
of M = 0.2 and a Prandtl number of Pr =0.71. The flow is governed by a set of
five equations: continuity, streamwise momentum, transverse momentum, spanwise
momentum and energy. These equations can be written in terms of the primitive
variables, density ρ, streamwise velocity u, transverse velocity v, spanwise velocity w

and temperature T , as follows:

∂

∂t
M [q] + Q [q] + N [q, q] = 0, (2.1)

where q = {ρ, u, v, w, T }, M and Q are the linear operators, and N contains all
nonlinear terms.

The boundary conditions imposed on the surface of the body are

u = v = w = 0,

∂ρ

∂n
=

∂T

∂n
= 0,

⎫⎬
⎭ (2.2)

where ∂/∂n is a derivative normal to the surface and the density condition is
derived from the equation of state. The far-field conditions used in the compressible
computations involve not only the primary variables ρ, u, v, w, T but also the
Riemann invariants. Assuming spanwise-uniform flow at the outer boundaries, these
conditions (expressed in terms of the primary variables) are given as

I1 = Vn +
2a

(γ − 1)
= kxu + kyv +

2

(γ − 1)

√
γRT ,

I2 = Vn − 2a

(γ − 1)
= kxu + kyv − 2

(γ − 1)

√
γRT ,

I3 = Vτ = kyu − kxv, I4 = w, I5 =
RT

ργ −1
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

Here kx, ky are the local directional cosines of the boundary normal. These conditions
are imposed on the subsonic boundaries in the following way. On the inlet boundary,
the invariants I1, I3, I4 and I5 are given and I2 is extrapolated from the computational
domain. On the outlet boundary, I1, I3, I4 and I5 are extrapolated from the
computational domain and I2 is given.

The state vector describing the total flow field can be decomposed into a steady
state q̄ = {ρ̄, ū, v̄, w̄, T̄ } and an unsteady vector q ′ = {ρ ′, u′, v′, w′, T ′}, q = q̄ + q ′. The
vector q̄ is a solution to the steady form of (2.1)–(2.3) – that is, with ∂q̄/∂t ≡ 0. The
steady-state Navier–Stokes equations are normally rewritten in conservative form
before solving them numerically using the NTS code (Strelets 2001). This code is
based on a finite-volume discretization on structured multi-block overlapping grids.
The inviscid fluxes in the governing equations are approximated with the use of a
third-order Roe scheme (Roe 1981), and the viscous fluxes are approximated with the
second-order central difference scheme.
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2.2. Quasi-3D approximation

The spanwise variation of the calculated baseflow q̄ is assumed to be small, as
characterized by D1/λ� 1. In the quasi-3D approximation, this small spanwise
variation is treated as a parametric variation of q̄ with z, which neglects ∂ q̄/∂z

when calculating q ′.
For conditions close to the steady state, the unsteady component q ′ can be

considered a small perturbation to the vector q̄. Substituting q = q̄ + q ′ into (2.1),
cancelling the terms governing q̄, neglecting the spanwise derivatives (∂/∂z) on q̄ and
linearizing the equations in terms of q ′ yields

∂

∂t
M [q ′] + Nq̄ [q ′] = 0. (2.4)

The linear operator M contains the terms associated with the time derivatives from
the original equation (2.1). The linear operator Nq̄ consists of linear terms from the

original equations and the terms generated by nonlinear interactions between q̄ and
q ′.

The quasi-3D approximation – neglecting the spanwise derivatives of the baseflow –
leads to a flow field that is not a solution to the Navier–Stokes equations. Potential
errors from this approximation will depend on the rate of spanwise variation as
characterized, for example, by |∂w/∂z|. The level of |∂w/∂z|, in turn, will scale with
the strength of the three-dimensionality, D1/λ� 1. This is similar to the quasi-parallel
approximation used in the boundary-layer stability theory (Crouch 1998). In that
case, parallel-flow solutions that depend parametrically on the Reynolds number
are used to approximate the growing (non-parallel) boundary layer. The fixed-z cuts
through the baseflow could be modified to solve the continuity equation, but this is
not expected to impact the stability results for small values of D1/λ.

The unsteady perturbation to the steady-state flow q̄(x, y; z) at a section z can be
represented by time-harmonic modes of the form

q ′(x, y, t; z) = q̂(x, y; z) exp (−iωt) . (2.5)

The function q̂ describes the mode shape, and ω is the frequency. In general, both
q̂ and ω can be complex, so the physical solution is taken as the real part of (2.5).
Substituting (2.5) into (2.4) and rescaling the terms yields a system of equations for q̂

and ω:

−iωq̂ + L (q̄) q̂ = 0, (2.6)

with L being a second-order differential operator.
The boundary and far-field conditions are obtained by introducing q = q̄ + q ′

into expressions (2.2) and (2.3), cancelling the terms governing the steady state and
linearizing with respect to q ′. Then substituting (2.5) for q ′ yields the boundary
conditions for q̂:

û = v̂ = ŵ = 0,

∂ρ̂

∂n
=

∂T̂

∂n
= 0.

⎫⎬
⎭ (2.7)

The far-field conditions for the inlet boundary are given by

Î 1 = Î 3 = Î 4 = Î 5 = 0,

∂Î 2

∂n
= 0,

⎫⎬
⎭ (2.8)
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and for the outlet boundary by

∂Î 1

∂n
=

∂Î 3

∂n
=

∂Î 4

∂n
=

∂Î 5

∂n
= 0,

Î 2 = 0.

⎫⎪⎬
⎪⎭ (2.9)

The variables Î 1, Î 2, Î 3, Î 4 and Î 5 are the linearized versions of the Riemann
invariants, (2.3). Equations (2.6)–(2.9) describe an eigenvalue problem governing the
complex frequency ω and mode shape q̂ for a given z-section cut under the quasi-3D
approximation.

2.3. Spanwise coupling and global response

The quasi-3D stability analysis yields a complex frequency ω and an associated
eigenfunction q̂ at each z-section. The 3D global instability depends on the entire
zone of instability, and not just on a single cut through the cylinder. Thus, a solution
for the physical problem requires some form of spanwise coupling to link the distinct
cuts into a global response.

Earlier studies have shown that the diffusive spanwise coupling can be captured
using model equations (Noack, Ohle & Eckelmann 1991; Albarède & Monkewitz
1992; Albarède & Provansal 1995). In the work of Albarède & Monkewitz (1992) the
Ginzburg–Landau equation was used to capture the essential features of spanwise-
limited shedding, including oblique shedding and the evolution of ‘chevron’ patterns
in the cylinder wake.

Here, we exploit the linearized Ginzburg–Landau equation to construct the global
response from the section-cut results. This equation can be written as

∂

∂t
A = (σr + iσi) A + (µr + iµi)

∂2

∂z2
A, (2.10)

with

A(0, z) = A0(z),

A(t, −L/2) = A(t, +L/2) = 0.

}
(2.11)

The amplitude A represents any of the physical quantities in q̂ . Near the onset of
instability, the sectional growth rate and frequency can be approximated by the values
at the maximum-diameter location, σ = (ωi − iωr )|z =0. The complex constant µ is a
spanwise diffusion coefficient. The value of µ (scaled with U and Dmax ) can be linked
to µ̄ (scaled with D and ν), used in Albarède & Monkewitz (1992), by µ = µ̄/ReDmax ;
they show typical values of µ̄r =32 ± 6, based on experiments with different end-
plate boundary layers. The imaginary part of the diffusion coefficient is given by
the ratio µ̄i/µ̄r = −0.3 ± 0.6. The relatively large uncertainty is a carryover from the
nonlinear term used in estimating the diffusion coefficient from fully nonlinear flow
fields. Here, we will back out the value of µ̄r by comparison to the simulations
and use µ̄i/µ̄r = −1/3. The initial spanwise-amplitude distribution A0(z) is given by
uniform noise. The length L is taken to be the length over which the cylinder exhibits
unstable section characteristics, lins (see § 4.2), so the conditions at ±L/2 require the
fluctuations to go to zero outside the ‘zone of instability.’
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Following separation of variables, the solution of the Ginzburg–Landau equation
is given by

A(z, t) = sin

(
nπ

lins

(
z +

lins

2

))
eσnt ,

σ n = σ − µ

(
nπ

lins

)2

.

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

Near the onset of instability, the n= 1 term dominates the solution, and the global
instability growth rate is given by

σ 1r = σ r − µ̄r

ReDmax

(
π

lins

)2

. (2.13)

The value of σ r is determined from the quasi-3D section-cut analysis at the maximum-
diameter location. The value of lins describes the spanwise length of the zone of
instability, in terms of diameters Dmax . The value of µ̄r =12 is obtained by comparison
to one of the unsteady simulation cases; this gives µ̄i = −4. The critical frequency is
given by

σ 1i = σ i − µ̄i

ReDmax

(
π

lins

)2

. (2.14)

For large wavelengths λ/Dmax or small amplitude variations D1/Dmax , the instability
length lins becomes large. In the limit of lins approaching infinity, the global growth
rate approaches the sectional growth rate at the maximum-diameter location, σ r =ωi ,
and the critical frequency approaches the section frequency at this location, σ i = −ωr .

An alternative solution to (2.10) and (2.11) could be obtained by approximating
σ with a cosine function in z. This leads to a Mathieu-type equation governing the
spanwise variation. For the current focus on a single spanwise zone of instability –
similar to the experiment of Chetan (2010) – this may not be justified. However, for
the general periodic problem, this would allow for more complex spanwise variations –
including subharmonics.

3. Unsteady simulations
The computations are carried out using the time-accurate version of the NTS code,

described in § 2.1 above. In this case, time integration is performed by an implicit
second-order backward (three-layer) scheme with sub-iterations.

The size of the computational domain in the radial direction is equal to 240D0,
and in the spanwise direction, z, it is equal to the half-period of the cosine wave, λ/2
(symmetric boundary conditions are used at both z-boundaries). An example grid
is shown in figure 2 (the grid has 160 × 200 × 45 nodes in the azimuthal, radial
and spanwise directions respectively). The grid and size of the computational domain
in the x–y plane were shown to be sufficient for defining the critical value of the
Reynolds number with an error less than 1 % based on preliminary computations
of the straight (2D) cylinder on different grids and with different domain sizes. The
influence of the spanwise grid spacing was assessed by doubling the spanwise grid,
which did not produce any visible alteration in the solution.

3.1. Comparison to experiment

To assess the UNS solution, results of the computations are compared with the
experimental data of Chetan (2010). Two cylinder models, long and short, were studied
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X

Y(a) (b)

Z
X

Y

Z

Figure 3. Isosurfaces of swirl from numerical simulations for the (a) short- and
(b) long-wavelength cylinders at ReDmax = 154.

in the experiments. The experimental models consisted of a single cosine wave, with
constant-diameter end extensions. The cosine amplitude is given by D1 = 0.33Dmax ,
and the wavelengths are λshort = 12.5Dmax and λlong =25Dmax .

Isosurfaces of the swirl quantity (magnitude of the second eigenvalue of the velocity
gradient tensor) are presented in figure 3 for both the short and long cylinders at
ReDmax = 154. Both cases are well above the critical conditions for the onset of
shedding. The images show that the shedding fluctuations are more dominant in
the middle of the cylinder, around the maximum-diameter location. The near-field
wake shows a spanwise wavy structure, which evolves into a more complex 3D flow
field downstream. For larger values of λ/Dmax , the shedding fluctuations are more
concentrated around the maximum-diameter location. The harmonic nature of the
shedding is shown in the time-series plots of figure 4. For the short-wavelength
cylinder, the shedding is characterized by a single frequency – roughly scaling with
the maximum diameter. This is consistent with the observations in the experiments
of Chetan (2010). For the long-wavelength cylinder, there are two characteristic
frequencies: one associated with the maximum diameter and one with the minimum
diameter. Note that at this Reynolds number, a 2D cut through the cylinder would
suggest that the minimum-diameter section is also supercritical.

Figure 5 provides a detailed comparison of the numerical predictions with the
experimental data. The figure shows the computed and measured contours of the
instantaneous velocity magnitude for the short cylinder at two values of the Reynolds
number based on the maximum diameter of the cylinder – one close to the onset
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Figure 4. Time histories of velocity components from simulations of short- (a) and
long-wavelength (b) cylinders at ReDmax = 154.

of unsteadiness and the other corresponding to the strongly unsteady (supercritical)
regime. One can see that in both cases, predicted and measured flow patterns are not
only qualitatively similar but also quantitatively close.

Thus, in general, the comparison with experiments provides good support for the
current numerical approach, which is used for both the baseflow calculation and the
UNS for assessing the stability theory.

3.2. Onset of vortex shedding

The critical Reynolds number for the onset of shedding is estimated from the
UNS solutions to be ReDmax ≈ 55.5–57 for the long-wavelength cylinder and
ReDmax ≈ 69.–70.5 for the short-wavelength cylinder. By comparison, the critical
Reynolds number for a 2D cylinder is ReD =47 (Hammache & Gharib 1991; Crouch
et al. 2007). The experiments show critical Reynolds numbers of approximately 59
and 61 for the long- and short-wavelength cylinders, respectively. For the long-
wavelength cylinder, the agreement is reasonably good, but for the short-wavelength
one, the computed critical Reynolds number is significantly overestimated. This may
be explained by the difference between the numerical and experimental set-ups. In the
simulations, the cylinders have purely cosine profiles and are periodic in the spanwise
direction, whereas the experimental models have constant-diameter tips with length
2.5Dmax (0.015 m). The tip effects are expected to be more significant for the shorter
wavelength cylinder.

Analysis of the UNS results show that in both initial (linear) and developed stages,
the flow oscillations are harmonic with frequency ωr =0.69 (scaled with Dmax ) which
is very close to the value ωr = 0.73 obtained earlier for the straight cylinder (Crouch
et al. 2007). This is seen in figure 6, which shows snapshots of the azimuthal velocity
component in the symmetry plane of the cylinder in the initial and developed stages.
One can see that the velocity field in both stages is qualitatively the same (the only
difference between the two snapshots is the much higher amplitude of the oscillations
in the developed stage). This suggests that near the onset of shedding, the global
oscillations of the flow past the wavy cylinder are governed by its most unstable
(maximum-diameter) section.

The wave fronts of the velocity oscillations in figure 6 are curved, roughly following
a cosine variation. The variation of the constant-phase lines over a half-wavelength
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Figure 5. Snapshots of the velocity magnitude for the short-wavelength cylinder at (a,b)
ReDmax = 90 and (c,d ) ReDmax = 154. (a,c) Images from the experiment of Chetan (2010),
and (b,d ) images from the simulations. The rectangular ‘window’ shows the region where
comparison can be made, and z = 62.5 mm corresponds to Dmax .

(from maximum diameter to minimum diameter) is in qualitative agreement with
experimental observations for the flow over a cone (Papangelou 1992).

Figure 7 shows a plot of the spanwise variation of normalized amplitude for the
azimuthal velocity oscillations, taken in the symmetry plane at a distance 1.4Dmax

downstream of the cylinder. The figure shows that in the close downstream vicinity
of the cylinder the amplitude is virtually zero at the minimum-diameter locations,
where the local Reynolds number is near critical (based on a 2D straight-cylinder
approximation). Farther downstream, the region of non-zero oscillations slowly
widens. The spanwise extent of the unsteadiness can be characterized by a length

scale luns =
∫ λ/2

−λ/2
A(z)/Amaxdz. The calculated luns for figure 7 gives luns/λ= 0.27 for

λ/Dmax = 60 and luns/λ=0.42 for λ/Dmax = 15.
The above observations suggest that, at least for the considered geometry, the

unsteadiness of the wavy-cylinder flow is mostly associated with the maximum-
diameter section, which provides support for the viability of a sectional analysis
for the stability. On the other hand, it is clear that such an analysis, either 2D or
quasi-3D, carried out for only one section of the flow is insufficient. For instance,
even if the maximum Reynolds number ReDmax for a wavy-cylinder flow is larger
than the critical value of 47 for the straight cylinder, the flow may still remain stable.
In other words, in addition to ReDmax , the onset of unsteadiness of the flow past a
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Figure 6. Instantaneous contours of azimuthal velocity in the symmetry plane of the cylinder,
taken from numerical simulations in the linear (a) and fully developed (b) stages of shedding
development. Results for the long cylinder with Dmax at z =0 and ReDmax = 60.
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simulations. Results for D1/Dmax = 0.2, with λ/Dmax = 60, ReDmax = 51.25 (dashed curve),
and λ/Dmax =15, ReDmax = 58.75 (dash-dotted curve).
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D1/Dmax λ/Dmax D1/λ Recrit
Dmax

0.20 60 0.0033 50.0–51.25
0.20 30 0.0067 52.5–53.75
0.20 15 0.0133 57.5–58.75
0.33 50 0.0067 51.0–52.50
0.33 25 0.0133 55.5–57.00
0.33 12.5 0.0267 72.0–73.50

Table 1. Summary of the conditions investigated using the UNS code.

wavy cylinder depends on its geometry, namely on D1/Dmax and λ/Dmax . In order to
elucidate the effect of these parameters and to obtain benchmark data for assessing
the stability theory, a series of UNS computations are conducted. These include two
sets of computations at D1/Dmax equal to 0.2 and 0.33 performed at different values
of λ/Dmax (from 12.5 to 60). Each case has been computed at different values of
ReDmax , which permits an identification of the critical ReDmax value (corresponding to
the onset of unsteadiness). Table 1 provides a summary of the unsteady-simulation
results.

As expected, for all the cases considered, the UNS predictions of the critical
Reynolds number, Recrit

Dmax , are higher than the critical value of 47 for the straight
cylinder. In other words, the wavy-cylinder flow is always more stable than the
corresponding 2D cylinder flow (with diameter equal to Dmax ). At fixed D1/Dmax , an
increase of λ/Dmax results in a decrease of Recrit

Dmax . This is expected since an increase in
λ/Dmax at fixed D1/Dmax results in less pronounced three-dimensionality of the flow,
so the critical value Recrit

Dmax should approach the critical value for a straight cylinder.
Finally, independent of the λ/Dmax value, an increase of the parameter D1/Dmax leads
to an increase of the critical Reynolds number. Both these trends can be attributed to
the increase of the flow three-dimensionality with the growth of the parameter D1/λ,
which characterizes the rate of spanwise variation of the geometry. For larger values
of D1/λ, the critical Reynolds number scales more closely with D0 than Dmax .

4. Quasi-3D stability analysis
4.1. Steady baseflow solutions

In order to conduct a global-stability analysis, steady baseflow solutions are required.
An example of a 3D steady solution obtained for the long cylinder considered
above (D1/Dmax = 0.33, λ/Dmax = 25) at ReDmax =60 is presented in figure 8. The
figure compares the contours of the streamwise velocity component at three spanwise
sections corresponding to the minimum, mid and maximum cylinder diameter. Similar
contours from computations of three 2D (straight) cylinders with the same diameters
are also shown. The cuts of the 3D flow field and the corresponding 2D solutions,
while visually similar, turn out to be significantly different (in terms of the stability
characteristics). However, the peak value in the spanwise velocity (not shown) is
only about 8% of the free-stream velocity. As a measure for the level of three-
dimensionality, the maximum value of |∂w/∂z| at the maximum-diameter location is
0.016 relative to |∂u/∂x| and |∂v/∂y| of order 1. As expected, the magnitude of the
spanwise-velocity derivative scales with D1/λ.

For this case, the Reynolds number based on the local diameter varies along the
cylinder from 60 down to 20, i.e. in a rather wide range around the critical value of
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Figure 8. Comparison of the calculated streamwise velocity of the baseflow for a wavy
cylinder (a,c,e) at (a,b) z = −λ/2, (c,d ) z = −λ/4 and (e,f ) z = 0. 2D calculations for straight
cylinders with matching diameters are also shown (b,d,f ).

about 47 for the straight cylinder. Along with the steady solution, a time-accurate
simulation of the same flow was carried out starting from the converged (with the
residual less than 10−10) steady-state solution. As expected, an unsteady solution is
obtained, thus suggesting that at the considered value of ReDmax = 60 the flow over
the wavy cylinder is globally unstable.

4.2. Stability results

The stability calculations start with a steady 3D flow field similar to that in
figure 8. Fixed-z station cuts are extracted from this flow field for use in the
quasi-3D stability analysis. For each cut, (2.6)–(2.9) are solved for the sectional-
stability characteristics subject to a spanwise-uniform-flow approximation (i.e. ∂/∂z is
neglected). The combined section-cut results are then used to determine the global-
stability characteristics using (2.13) and (2.14).

Results from the section-stability analysis of the 3D wavy-cylinder flow field are
given in figure 9 for λ/Dmax = 60, ReDmax = 50. At these conditions, the UNS show
the flow to be steady, implying global stability. The figure shows the growth rate as
a function of z, along with the corresponding section of the cylinder. The solid curve
gives the quasi-3D result, and the short-dashed curve is for a 2D (straight) cylinder
with a diameter matching the local-section diameter. The long-dashed line shows
the growth rate for a straight cylinder with a diameter matching Dmax . The taper
(D <Dmax for |z| > 0) has a stabilizing effect in terms of the sectional growth rate. This
stabilizing effect will increase in relation to the level of taper – characterized by D1/λ.
Thus, the wavy cylinder displays a ‘zone of instability’, which can be characterized
by the spanwise length lins , over which ωi > 0. At the maximum-diameter location,
the growth rate predicted from the quasi-3D analysis is greater than the 2D result
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Figure 9. Sectional growth rates based on the quasi-3D analysis (solid line), approximate-2D
analysis (short-dashed line) and 2D analysis for D =Dmax (long-dashed line). Variation of the
cylinder diameter is also shown for reference (D1/Dmax = 0.2, λ/Dmax = 60, ReDmax = 50).

for D = Dmax . The x–y structure of the unsteadiness is given by the eigenfunction q̂ .
This structure is consistent with the typical vortex shedding pattern, as discussed in
Crouch et al. (2007).

Figure 10 shows stability results for a range of λ/Dmax and D1/Dmax values. In
each case, the Reynolds number is close to the value where the flow first becomes
unsteady in the UNS. At these near-critical conditions, the values of ωi at D = Dmax

and lins vary significantly with the degree of three-dimensionality. The results from
figure 10 also show that the differences between the quasi-3D analysis and the
approximate-2D analysis increase significantly with the level of three-dimensionality
(for near-critical conditions). In figure 10(a) (with D1/λ= 0.0033), the quasi-3D
result is indistinguishable from the approximate-2D result. In figure 10(f ) (with
D1/λ= 0.026), the maximum values of ωi differ by nearly a factor of 2.

Figure 10 also shows the frequencies ωr calculated from the sectional analysis. For
comparison, the frequency observed in the UNS is shown by a straight line extending
over the length of the zone of unsteadiness luns . The quasi-3D results for the frequency
at the D =Dmax section are in general agreement with the UNS results.

The length of unsteadiness luns (from the UNS) is compared to the length of
instability lins (from the section-stability analysis) in figure 11. The values are plotted
as a function of the level of three-dimensionality D1/λ; the lines are power-curve
fits through the points. The two curves follow one another very closely, suggesting
a link between the global unsteadiness and the zone of instability predicted by the
section-cut analysis.

4.3. Spanwise coupling and global response

In the quasi-3D analysis, the global response is obtained from the section-cut stability
results by accounting for the spanwise coupling of the flow. This is modelled using the
Ginzburg–Landau equation, which yields a spanwise-amplitude function, a growth
rate and a frequency for the unsteady flow quantity. The amplitude function, given in
(2.12), is plotted in figure 12 for the two flow conditions considered in figure 7. Here
the spanwise variable is normalized with the maximum diameter, as compared to the
waviness wavelength used in figure 7. The agreement around the maximum-diameter
location is very good. The key difference between the theory and simulation occurs at
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Figure 10. Sectional growth rates and frequencies at near-critical conditions (just supercritical
as determined from the UNS) for: (a) D1/Dmax = 0.20, λ/Dmax = 60, ReDmax = 51.25;
(b) D1/Dmax = 0.33, λ/Dmax =50, ReDmax = 52.5; (c) D1/Dmax = 0.20, λ/Dmax = 30, ReDmax =
53.75; (d ) D1/Dmax = 0.33, λ/Dmax = 25, ReDmax = 57; (e) D1/Dmax = 0.20, λ/Dmax = 15,
ReDmax = 58.75; and (f ) D1/Dmax = 0.33, λ/Dmax = 12.5, ReDmax = 73.5 The thick-solid-line
results are from the quasi-3D analysis, the dashed-line results are from the approximate-2D
analysis and the thin solid line shows the frequency and the zone of unsteadiness from the
simulations.
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Figure 11. Variation of the length of unsteadiness (luns from simulations) and the length of
instability (lins from the quasi-3D analysis) as a function of the level of three-dimensionality
D1/λ.
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Figure 12. Spanwise variation of the normalized velocity-fluctuation amplitude as predicted
from the stability theory (thick lines) and from the UNS (thin lines). Results for
D1/Dmax = 0.2, with λ/Dmax = 60, ReDmax = 51.25 (dashed curves) and λ/Dmax = 15, ReDmax =
58.75 (dash-dotted curves).

the edges of the unsteadiness; the theory predicts a sharp cutoff, while the simulations
show a low-amplitude ‘tail’ in the spanwise response.

Figure 13 shows the critical Reynolds number as a function of λ/Dmax calculated
from (2.13) using the results of figure 10. The two curves show two different values
of D1/Dmax . The symbols are from the UNS solutions. The open symbols correspond
to the conditions that are found to be unsteady, and the filled symbols are for the
conditions that resulted in steady solutions. The straight dashed line shows the large-
wavelength limiting value (from 2D analysis). In general, the agreement with the
simulations is very good. As the flow becomes more 3D (smaller λ/Dmax or larger
D1/Dmax ), the differences between the theory and simulation become more significant.
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Figure 13. Critical Reynolds number for the onset of vortex shedding as predicted by the
stability theory (lines) and the UNS (solid symbols – steady, open symbols – unsteady).
The solid line and circles correspond to D1/Dmax =0.20, and the dashed line and squares
correspond to D1/Dmax = 0.33.
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Figure 14. Critical frequency for global mode at the onset of vortex shedding as predicted
by the stability theory (lines) and the UNS (symbols). The solid line and circles correspond to
D1/Dmax = 0.20, and the dashed line and squares correspond to D1/Dmax =0.33.

The critical frequencies corresponding to figure 13 are shown in figure 14. These also
show good agreement between the theory and simulations.

5. Conclusions
In this paper, the global-stability analysis is extended from 2D baseflows to 3D

baseflows, with a weak variation in a third (spanwise) dimension, using a quasi-
3D formulation. The spanwise variation is modelled parametrically, leading to 2D
stability problems that are solved at discrete spanwise sections. The global response
is constructed using the Ginzburg–Landau equation to model the spanwise diffusive
coupling between the sections.
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This approach is used to analyse the onset of vortex shedding for a circular cylinder
with the diameter varying periodically along the cylinder axis. The global-instability
growth rate, and the associated frequency, for a wavy cylinder is a function of the
sectional growth rate at the maximum-diameter location and the spanwise extent of
the instability. Stability-based predictions for the onset of vortex shedding on the
wavy cylinder are in very good agreement with direct numerical simulations. The
stability analysis and the numerical simulations both show a spanwise-limited zone of
unsteadiness at the onset of shedding. This zone becomes smaller with an increasing
level of three-dimensionality, characterized by the waviness amplitude or the inverse
of the wavelength. The critical Reynolds number for vortex shedding increases with
the level of three-dimensionality, while the critical frequency drops.

We would like to acknowledge helpful discussions with Professor Mike Gaster,
Professor O.N. Ramesh and Professor Peter Monkewitz.
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Albarède, P. & Provansal, M. 1995 Quasi-periodic cylinder wakes and the Ginzburg–Landau
model. J. Fluid Mech. 291, 191–222.

Chetan, S. J. 2010 Dynamics of vortex shedding from slender cones. Ph.D. Dissertation, University
of London.

Crouch, J. D. 1998 Theory of instability and transition. In The Handbook of Fluid Dynamics (ed.
R. W. Johnson), pp. 13-12–13-25, CRC Press.

Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based
on global instability. J. Comput. Phys. 224, 924–940.

Crouch, J. D., Garbaruk, A., Magidov, D. & Travin, A. 2009 Origin of transonic buffet on
aerofoils. J. Fluid Mech. 628, 357–369.

Gaster, M. 1969 Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 38,
565–576.

Hammache, M. & Gharib, M. 1991 An experimental study of the parallel and oblique vortex
shedding from circular cylinders. J. Fluid Mech. 232, 567–590.

Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously
shaped bodies. J. Fluid Mech. 182, 23–45.

Noack, B. R., Ohle, F. & Eckelmann, H. 1991 On cell formation in vortex streets. J. Fluid Mech.
227, 293–308.

Papangelou, A. 1992 Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech.
242, 299–321.

Roe, P. L. 1981 Approximate Riemann solvers, parameters vectors and difference schemes.
J. Comput. Phys. 43, 357–372.

Strelets, M. 2001 Detached-eddy simulation of massively separated flows. AIAA Paper 2001-0879.

Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular
cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579.

Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Math. 21, 155–165.


